
Servos, DCC & Arduinos
Mark Riddoch
For some time now I have been thinking about ways to make things other than the locomotives
move on my layouts. Radio Control servos have become an accepted way to control the points
and semaphore signals, but we could use them for more if we had a good way to integrate the
proportional control of them into our control systems. Currently MERG have with the servo4 and
CANServo8 that allow us to have two position actuators. The Sema4 allows bounce to be
simulated but if you want to animate a crane we probably want more than just the ability to set two
points and have the crane move between them. We can use custom devices like the simple servo
testers to do better with positioning, but it means a separate set of controls for your animated
devices, is that what we really want?

Proportional Servo Movement
The first thing I thought about was to have a dockside crane that I could swing the jib and wind the
hook up and down. I embarked on modifying a CANServo8 to take position information messages
rather than just binary ON/OFF events. I also started to convert a CANACE8 to be a CAN A/D
convertor so that I could use a set of pots to send CBUS events that would move the servo to a
particular position. This all seemed great, but I still needed separate controls, although it used the
same bus wiring. What if I wanted to do something that was rail mounted, CBUS would not help
me. Why not put something together that would work for both static items, like the dock side crane,
and also mobile devices, e.g. a break down crane. Could I make use of existing controls to do this?
My thoughts turned to using DCC for controlling the servos.
Attempt number one was simply to use the setting of the speed knob to control the absolute
position: setting the speed to 50% would cause the servo to move to 50%. That works fine, but has
the disadvantage that when you switch to another device, e.g. your locomotive, you have to turn
the speed down. Switching back to your servo then ends up with a “jump”, since it is very hard to
set the speed position accurately to what it was previously. Also I wanted to be able to have
several servos in one device, so having just a single speed setting set the servo would mean I
would need a decoder per servo - this is starting to get large, especially as I model in 4mm.
The second attempt, and the one which I will describe in more detail here, was to use the speed
control still, instead of the speed control setting an absolute position, I would use it to control the
speed of the servo movement. I built a decoder that has 3 CV values per decoder: a start position,
an end position and a time to move between those two positions. Setting the direction to be
forward and turning up the speed control would cause the servo to start moving between the start
position and the end position. The speed at which it moved was determined by the speed setting
on the controller, setting a speed of 50% would result in the servo moving at half the defined
speed, i.e. it would take twice the time programmed in the CV to move all the way from the start to
end position. Setting the speed to zero would cause the servo to stop at whatever the current
position was. Changing to the backwards direction would cause the servo to move from whatever
the current position is towards the start position.
This gave me control to set the servo to any position between the programmed start and end
position and have it stop. It also allowed the speed at which the servo moved to be varied from
zero to the pre-defined maximum. The issue of multiple servos was addressed by using the
function keys to define which servo to move. Turn on function 0 and the first servo would move,
turn it off and that servo would stop, regardless of the current speed setting. Switching on function
1 would mean that the speed and direction setting was applied to the second servo and so on.
Multiple functions could be on at once, meaning that multiple servos could be moved at once.
I built a prototype using an Arduino, since the DCC library and servo library are freely available and
it is a very simple and quick platform for doing this sort of prototyping. I took my prototype along to
the Thames Valley Area meeting at Grazeley and showed my attempts to the rest of the members.
There was a reasonable amount of interest. We had already done an Arduino tutorial evening on
driving servos, and it was agreed that it would be good to do something similar for this DCC

application of servos. We timetabled two evenings as workshop evenings so we could all build a
version of this and hopefully share some experiences and knowledge.

DCC Interface Board
The first of these evenings was about building the hardware component; not much was required for
the Arduino, just the interface to enable it to receive the DCC packets and to send
acknowledgements back to the command station. Here I cheated and just extracted the front end
opto-isolator circuit from the MERG accessory decoders. We did not worry about powering the
Arduino and servos from the DCC bus. In this prototype the Arduino would be powered from the
USB connector that was used to program it. The power for the servos would come from the
Arduino onboard regulator. Fortunately one of our members, Dave Ingoldby, was adept at etching
PCBs and agreed to etch enough PCBs and make up kits so that everybody who was interested
could build an interface.

A month later we have 20 kits and
a room full of people ready to start
assembling a DCC interface board
for the Arduino. Assembly went
well and by the tea break just
about everybody had assembled a
kit and we were ready to start
testing them. Amazingly all but 1
interface board worked first time.
With that we called it a successful
evening and retired ready for part
2 of the workshop. This time we
had a room full of people with
laptops, various DCC systems,
Arduino boards and the interface
boards we had previously made.
Rather than simply go straight in

with the final code I had come up
with I decided it would probably be more beneficial for everybody, including me, to go through the
stages I had with the Arduino DCC library - known as NmraDcc. If nothing else it was good for me
since it reinforced what I had learnt on the way and hopefully it would help others in the group as
well.
DCC “hello word”
Once everybody had the Arduino IDE installed and copies of the required libraries we started with
the DCC library equivalent of “hello world”, a simple Arduino Sketch that would print the details of
the speed control setting DCC packet. The first step was the initialization of the DCC Library. This
consisted of defining the two Arduino pins that were connected to the interface boards we had
previously made and calling the init method in the NmraDcc library. In our case the connection
from pin 6 of U1 was connected to the digital pin 2 on the Arduino and the R3 connection was
attached to pin 3 of the Arduino. The 5 volts and 0 Volts of the interface circuit where connected to
the 5V and GND pins on the Arduino.

The NmraDcc library is written so that it has a “loop” routine that must be called periodically in
order for the DCC packets to be processed. This is achieved by simply calling the Dcc.process
method within the Arduino loop function.

void loop()
{
 // You MUST call the NmraDcc.process() method frequently from
 // the Arduino loop() function for correct library operation
 Dcc.process();
}

This gets everything setup to process DCC packets but it doesn’t give a way to see what those
packets are. The NmraDcc library uses template functions to effectively provide callbacks to the
user code when DCC events are received. In the case of the DCC speed packet defining a
function with the name notifyDccSpeed will be called whenever a DCC speed packet is received.
Our “hello world” example merely printed the information we received to the serial port, the serial
port monitor function of the Arduino IDE allows us to view the information printed.

Left: One of the interface boards we built in the
first session.

#include <NmraDcc.h>

/*
 * DCC Example 1
 *
 * Print all speed control packets for DCC address 3
 */
NmraDcc Dcc;
DCC_MSG Packet;
const int DccAckPin = 3;
const int DccInPin = 2;

void setup()
{
 Serial.begin(9600);

 // Configure the DCC CV Programing ACK pin as an output
 pinMode(DccAckPin, OUTPUT);
 digitalWrite(DccAckPin, LOW);

 // Setup which External Interrupt, the Pin it's associated with that we're
 // using and enable the Pull-Up
 Dcc.pin(0, DccInPin, 1);

 // Call the main DCC Init function to enable the DCC Receiver
 Dcc.init(MAN_ID_DIY, 10, FLAGS_OUTPUT_ADDRESS_MODE, 0);
}

/*
* Called with the speed, direction and number of speed steps whenever
* a DCC speed packet is received
 */
void notifyDccSpeed(uint16_t Addr, uint8_t Speed, uint8_t ForwardDir, uint8_t
SpeedSteps)
{
 // If the address is not 3 then simply return
 // Comment this out to have all addresses printed
 if (Addr != 3)
 return;
 Serial.print("DCC Speed ");
 Serial.print(Speed,DEC);
 Serial.print(" Addr ");
 Serial.print(Addr, DEC);
 Serial.print(" ForwardDir ");
 Serial.print(ForwardDir, HEX);
 Serial.print(" SpeedSteps ");
 Serial.println(SpeedSteps, DEC);
}

Although a simple example, it gave insight into the way speed is represented in DCC and how
DCC systems deal with sending data, i.e. the periodic sending of speed packets even when the
speed is not changed. We also had the first building block for our servo decoder.

DCC Functions
The second exercise was to look at the way the function buttons were translated into DCC
packets. The basic setup and loop were identical to the first example. A new routine,
notifyDccFunc, was added to receive the DCC function packet data.

/*
 * Called to report the state of the function keys
 */
void notifyDccFunc(uint16_t Addr, uint8_t FuncNum, uint8_t FuncState)
{
 // If the address is not 3 then simply return
 // Comment this out to have all addresses printed
 if (Addr != 3)
 return;
 Serial.print(" DCC Func Addr ");
 Serial.print(Addr, DEC);
 Serial.print(" FuncNum ");
 Serial.print(FuncNum, HEX);
 Serial.print(" FuncState ");
 Serial.println(FuncState, HEX);
}

This example was much more revealing of some aspects of the history of DCC, the way in which
the numbers of functions available have evolved over time. There are two interesting parameters
to this call other than the obvious one of address: FuncNum and FuncState. Most people expected
the FuncNum to the the selected function and the FuncState to be on or off. This is not the case.
The FuncNum parameter is used to select a “bank” of functions, and the FuncState is a bitmap that
represents the state of the functions within that bank.
A value of 1 in FuncNum represents F0, F1, F2, F3 and F4, with bit 4 representing the state of F0.
If bit 4 is set then F0 is on and if bit 4 is clear then F0 is off. F1 is represented by bit 0, F2 by bit 1,
F3 by bit 2 and F4 by bit 3. The reason for the slightly strange bit encoding dates back to before
the function packets where introduced and there was merely a lighting function bit in the loco
speed packet. A value of 2 in FuncNum represents F5 to F12.

A First Servo Decoder
This gave us the building blocks for the DCC side of the program, so we progressed to the servo
side. I had already taken the standard Arduino servo library and wrapped it into another library that
provided an interface that had a similar init and loop philosophy to the NmraDcc library.
Arduino libraries are basically C++ classes. I created a class with a constructor that took the
Arduino pin to which the servo was connected, a start and end angle and time in seconds to move
between those angles at maximum speed. As with the NmraDcc library, the loop method of this
class should be called regularly to allow the servo to move smoothly.

class DCCServo {
 private:
 ...
 public:
 DCCServo(int, int, int, unsigned int);
 void loop();
 void setSpeed(int, boolean);
 void setActive(boolean);
 void setStart(int);
 void setEnd(int);
 void setTravelTime(int);
};

The setSpeed method is called to set the speed at which the servo should move, as a percentage
of the maximum speed defined in the constructor and also the direction of travel.
The setActive method is used to connect and disconnect the servo, which allows the servo to be
stopped and the control signal removed from the servo to prevent any servo jitter or twitching.
The setStart, setEnd and setTravelTime methods are used to update the values passed to the
constructor for the angles and travel time. These come into play later. The next example was the
first time we actually started to get the servos to move under DCC control. We updated our setup
routine to create 3 instances of the DCCServo class.

DCCServo *servo1, *servo2, *servo3;
const int servoPin = 9;

void setup()
{
 Serial.begin(9600);

 // Configure the DCC CV Programing ACK pin for an output
 pinMode(DccAckPin, OUTPUT);
 digitalWrite(DccAckPin, LOW);

 // Setup which External Interrupt, the Pin it's associated with that
 // we're using and enable the Pull-Up
 Dcc.pin(0, DccInPin, 1);

 // Call the main DCC Init function to enable the DCC Receiver
 Dcc.init(MAN_ID_DIY, 10, FLAGS_OUTPUT_ADDRESS_MODE, 0);

 // Create the 3 instances of the DCCServo class that represents
 // each of the servos we control. The arguments are the pin number,
 // two limits of travel and the time in seconds to move between them
 // at 100% velocity
 servo1 = new DCCServo(servoPin, 10, 130, 30);
 servo2 = new DCCServo(servoPin + 1, 20, 80, 10);
 servo3 = new DCCServo(servoPin + 2, 0, 90, 60);
}

In this example the three servos were preset to move between 10 and 130 degrees in 30 seconds,
20 and 80 degrees in 10 seconds and 0 to 90 degrees in 60 seconds. The servos are wired with

the 5V and 0V lines (red and black on some servos) connected to the Arduino 5V and GND
connections. The white control lines of each servo are then connected to digital pins 9, 10 and 11
of the Arduino board.
The notifyDCCSpeed routine was replaced with one that calculated the current speed as a
percentage and called the setSpeed method of each of the servos with this speed percentage and
the forward/reverse flag. A value of 0 in the ForwardDir argument represents reverse direction and
0x80 is used to indicate forwards movement.

/*
 * Work out the current speed percentage and direction and update each of the
 * servos with this data
 */
void notifyDccSpeed(uint16_t Addr, uint8_t Speed, uint8_t ForwardDir, uint8_t
SpeedSteps)
{
 /* Only respond to address 3 */
 if (Addr != 3)
 return;

 int percentage = ((Speed - 1) * 100) / SpeedSteps;
 servo1->setSpeed(percentage, ForwardDir != 0);
 servo2->setSpeed(percentage, ForwardDir != 0);
 servo3->setSpeed(percentage, ForwardDir != 0);
}

The notifyDccFunc routine was also replaced with one that would set servo1, servo2 and servo3
active or inactive based on the current setting of F0, F1 and F2 functions.

/*
 * Update the active status of each of the servos based on the functions
 * that are enabled.
 */
void notifyDccFunc(uint16_t Addr, uint8_t FuncNum, uint8_t FuncState)
{
 /* Respond only to address 3 */
 if (Addr != 3)
 return;

 if (FuncNum != 1)
 return;
 if (FuncState & 0x10)
 servo1->setActive(true);
 else
 servo1->setActive(false);
 if (FuncState & 0x01)
 servo2->setActive(true);
 else
 servo2->setActive(false);
 if (FuncState & 0x02)
 servo3->setActive(true);
 else
 servo3->setActive(false);
}

Finally we updated the loop function so that each of the servo object’s loop methods are called in
addition to the NmraDcc.process method.

void loop()
{
 Dcc.process();

 // Call the loop functions for each of the servos
 servo1->loop();
 servo2->loop();
 servo3->loop();
}

Putting all the pieces together, we had a DCC decoder that could drive the three servos between
the compiled in angles, stop the servos at any angle between the end points for that servo and
control which servos are moved when. What is missing to make this a usable servo decoder is the
ability to set the end points, speed and address via the DCC system, i.e. programing via CV’s.

Programming CVs
A number of steps are involved in making the decoder work with CV values. Firstly an internal
storage structure is created and #define’s written for all of the CV numbers that apply to this
decoder.

// CV Storage structure
struct CVPair
{
 uint16_t CV;
 uint8_t Value;
};

/*
 * The CVs that are used for servos
 */
#define CV_S0LIMIT0 10
#define CV_S0LIMIT1 11
#define CV_S0TRAVEL 12
#define CV_S1LIMIT0 13
#define CV_S1LIMIT1 14
#define CV_S1TRAVEL 15
#define CV_S2LIMIT0 20
#define CV_S2LIMIT1 21
#define CV_S2TRAVEL 22

The next step was to create a set of “factory defaults” for the CV, in this example we used the
values we had previously hardwired into the setup routine.

Above: Arduino development boards do not have to be big. Here is an Arduino Mini clone
pictured next to a 5 pence coin.

/*
 * The factory default CV values
 */
CVPair FactoryDefaultCVs [] =
{
 {CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB, 3},
 {CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB, 0},
 {CV_MULTIFUNCTION_PRIMARY_ADDRESS, 3},
 {CV_VERSION_ID, DCCSERVO_VERSION_ID},
 {CV_MANUFACTURER_ID, MAN_ID_DIY},
 {CV_S0LIMIT0, 10},
 {CV_S0LIMIT1, 80},
 {CV_S0TRAVEL, 20},
 {CV_S1LIMIT0, 30},
 {CV_S1LIMIT1, 110},
 {CV_S1TRAVEL, 10},
 {CV_S2LIMIT0, 30},
 {CV_S2LIMIT1, 110},
 {CV_S2TRAVEL, 10},
 {CV_29_CONFIG, 0},
};

The setup routine was modified so that the servo instances are created with the values in the CV’s
rather than the hardwired values. Also the flags passed in the Dcc init routine are changed to
include FLAGS_MY_ADDRESS_ONLY, which means that the notify functions will now only be
called for the DCC address set in our CV, either in CV1 or in the extended address in CV17 and
CV18, the setting of CV29 defines if extended addressing is in use.

/*
 * Setup routine called on startup of the decoder
 */
void setup()
{
 Serial.begin(9600);

 // Configure the DCC CV Programing ACK pin for an output
 pinMode(DccAckPin, OUTPUT);
 digitalWrite(DccAckPin, LOW);

 // Setup which External Interrupt, the Pin it's associated with that
 // we're using and enable the Pull-Up
 Dcc.pin(0, DccInPin, 1);

 // Call the main DCC Init function to enable the DCC Receiver
 Dcc.init(MAN_ID_DIY, 10,
 FLAGS_MY_ADDRESS_ONLY|FLAGS_OUTPUT_ADDRESS_MODE, 0);

 // Create the instances of the servos, initialise the limits and travel
 // times from the CV values
 servo1 = new DCCServo(servoPin, Dcc.getCV(CV_S0LIMIT0),
 Dcc.getCV(CV_S0LIMIT1), Dcc.getCV(CV_S0TRAVEL));
 servo2 = new DCCServo(servoPin + 1, Dcc.getCV(CV_S1LIMIT0),
 Dcc.getCV(CV_S1LIMIT1), Dcc.getCV(CV_S1TRAVEL));
 servo3 = new DCCServo(servoPin + 2, Dcc.getCV(CV_S2LIMIT0),
 Dcc.getCV(CV_S2LIMIT1), Dcc.getCV(CV_S2TRAVEL));
}

To add the mechanism to accept new CV values, there are two things required: a method to send
the acknowledge to the command station and a routine that actions the changes to the CV values.
These are both done using notify functions.

// This function is called by the NmraDcc library
// when a DCC ACK needs to be sent
// Calling this function should cause an increased 60ma current drain
// on the power supply for 6ms to ACK a CV Read
void notifyCVAck(void)
{
 digitalWrite(DccAckPin, HIGH);
 delay(6);
 digitalWrite(DccAckPin, LOW);
}

DCC is essentially a unidirectional system, with data being sent from the command station to the
decoders, or at least it has been until recently with the advent of Railcom for transmitting data in
the opposite direction. Decoder programing does not use Railcom, it uses the much more primitive
mechanism by which the command station monitors a change in the current draw from the decoder
to receive data from the decoder. The command station looks for an increase of at least 60mA for a
period of 6ms to represent a single acknowledge bit.
Using the interface board that we built in the first session, this is achieved by turning on the
DccAckPin that causes the transistor Q1 to turn on and current to flow through the 100ohm
resistor. You may have wondered why when you program a loco decoder that the motor gets
pulsed, this is simply the decoder sending acknowledge bits back for the programming sequence
and the CV read back. Normal locomotive decoders can use the motor as a way to alter the
current draw of the decoder. In our case, since the Arduino and servos are not powered from the
DCC bus, we have to use the opto-isolator to drive track voltage through the resistor in order to
increase the current draw on the DCC side of the isolator circuitry.
The NmraDcc library notifies us of changes to the values of CVs using the same notify function
mechanism. The function notifyCVChange is called whenever the decoder is sent a new CV value
by the command station. In our case we then call the appropriate function in the servo instance
that is being updated. Changing CV12 will change the time it takes for the first servo to move
between the two end points, hence it calls the setTravelTime for the servo1 object.

/*
 * Called to notify a CV value has been changed
 */
void notifyCVChange(uint16_t CV, uint8_t value)
{
 Dcc.setCV(CV, value);
 switch (CV)
 {
 case CV_S0LIMIT0:
 servo1->setStart(value);
 break;
 case CV_S0LIMIT1:
 servo1->setEnd(value);
 break;
 case CV_S0TRAVEL:
 servo1->setTravelTime(value);
 break;
 case CV_S1LIMIT0:
 servo2->setStart(value);
 break;
 case CV_S1LIMIT1:
 servo2->setEnd(value);
 break;
 case CV_S1TRAVEL:
 servo2->setTravelTime(value);
 break;
 case CV_S2LIMIT0:
 servo3->setStart(value);
 break;
 case CV_S2LIMIT1:
 servo3->setEnd(value);
 break;
 case CV_S2TRAVEL:
 servo3->setTravelTime(value);
 break;
 case CV_MULTIFUNCTION_PRIMARY_ADDRESS:
 MyAddress = value;
 break;
 }
}

When the NmraDcc library sees a factory reset event for the decoder, a write to CV8, it calls the
special notify function, notifyCVResetFactoryDefault. This notify call cannot directly set the values
for all the CVs, this must be done one CV at a time with the DCC objects process method being
called.

/*
 * A factory reset is required. Called on first run if the NVRAM does not
 * contain valid CV values
 */
void notifyCVResetFactoryDefault()
{
 // Make FactoryDefaultCVIndex non-zero and equal to num CV's to be reset
 // to flag to the loop() function that a reset to Factory Defaults needs to be done
 FactoryDefaultCVIndex = sizeof(FactoryDefaultCVs)/sizeof(CVPair);
}

The variable FactoryDefaultCVIndex is set to the number of CVs that need to be set for the factory
to complete. The loop routine is modified to call setCV on each of the CVs that need to be set and
decrementing FactoryDefaultCVIndex on each call.

/*
 * Loop function, this is the main body of the code and is called repeatedly
 * in order to do whatever processing is required.
 */
void loop()
{
 // Execute the DCC process frequently in order to ensure
 // the DCC signal processing occurs
 Dcc.process();

 /* Check to see if the default CV values are required */
 if(FactoryDefaultCVIndex && Dcc.isSetCVReady())
 {
 FactoryDefaultCVIndex--; // Decrement first as initially it is the
 // size of the array
 Dcc.setCV(FactoryDefaultCVs[FactoryDefaultCVIndex].CV,
 FactoryDefaultCVs[FactoryDefaultCVIndex].Value);
 }

 // Now call the loop method for every DCCServo instance
 servo1->loop();
 servo2->loop();
 servo3->loop();
}

With all these components in place we now had a DCC decoder that could not only drive the
servos as described but which also let us set the decoder address, servo end points and speed via
conventional CV programing, either on a programming track or using “programming on the main”.

Other Devices
As an extension to the workshop and because a number of people had purchased Arduino starter
kits from ebay that included a stepper motor and shield to control it, I wrote another library, with a
similar interface to the DCCServo library that would allow a stepper motor to be driven rather than
a servo.
The public interface to the stepper motor library is shown below and is slightly simpler than that
required for the servo. There is no start and end position, just a maximum speed defined in
revolutions per minute.

class DCCStepper {
 private:
 ...
 public:
 DCCStepper(int, int, int, int, int, int);
 void loop();
 void setSpeed(int, boolean);
 void setActive(boolean);
 void setRPM(int);
};

In this case the constructor is passed the four pins to which the stepper motor shield was attached
and a default value for the maximum RPM value of the stepper motor. To use a stepper motor
rather than a servo, the setup routine needs to be altered to call the correct constructor, the notify
routines for the speed and function buttons call the setSpeed in this new object and the stepper
loop function is called rather than the servo loop function. It is actually a lot easier than is
suggested. One member of the group very quickly had a variant of the decoder that could drive two
servos and one stepper motor. Proving the versatility of the approach and the ease with which
custom decoders could be created.
As an exercise to illustrate how versatile the approach is and how cheaply solutions can be put
together I rounded the evening off by showing a prototype sound decoder based on the same

interface card, libraries and Arduinos. I found a library that could play WAV files from an SD card
and a cheap microSD card adapter for use with the Arduino. In all I put together a very simple, low
quality sound decoder that could be controlled via the DCC system with one evenings work and
£10 worth of parts. Although not usable as it stood, with some more work and a few improvements
on the audio side I think it could become a viable option for creating DCC controlled sound effects.

Above: A DCC Sound Decoder on a breadboard, on the left is a micro-SD card read, an
Arduino Micro clone on the right. The speaker, amplifier and DCC interface are not shown.
All the code shown here is available freely online, my example code and libraries can be found on
GitHub, https://github.com/M1118. The NmraDcc library is also available online, on the http://
mrrwa.org website. I found this a useful exercise in understanding more about how DCC works,
but more than that I can see this being a practical solution to controlling the likes of cranes and
other animated objects on the layout.
Several different Arduino models have been used by the group, including a number of cheap
clones purchased from ebay. Arduino mini and nano clones can be purchased for £2 or less and
are small enough to consider installing within our models, at least for 4mm and larger scales, if you
don’t want to consider buying Arduino processors and making your own PCBs. I have been
considering the possibility of creating a “DCC decoder core” with the interface for the DCC bus,
power supplies for the Arduino and the Arduino chip itself on a single, probably surface mount
board that could be used as a flexible platform for DIY decoder building.

https://github.com/M1118
https://github.com/M1118
http://mrrwa.org
http://mrrwa.org
http://mrrwa.org
http://mrrwa.org

